..

Internationale Zeitschrift für Wirtschafts- und Managementwissenschaften

Manuskript einreichen arrow_forward arrow_forward ..

Heart Disease Diagnosis Using Data Mining Techniques

Abstract

Ramin Assari, Parham Azimi and Mohammad Reza Taghva

In recent decades, heart disease has been identified as the leading cause of death across the world. However, it is considered as the most preventable and controllable disease at the same time. According to World Health Organization (WHO), the early and timely diagnosis of heart disease plays a remarkable role in preventing its progress and reducing related treatment costs. Considering the ever-increasing growth of heart disease-induced fatalities, researchers have adopted different data mining techniques to diagnose it. According to results, application of the same data mining techniques leads to different results in different datasets. This study tries to assist healthcare specialists to early diagnose heart disease and assess related risk factors. To this end, the main heart disease diagnosis indices were identified using experts’ opinions. Then, data mining techniques were applied on a heartrelated dataset. Finally, the main heart disease diagnosis indices were identified and a model was developed based on extracted rules. Visual Studio was used to write the algorithm code.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Teile diesen Artikel

Indiziert in

arrow_upward arrow_upward nt=document.createElementcript");nt.async=true;nt.src="https://mylivechat.com/chatinline.aspx?hccid="+hccid;var ct=document.getElementsByTagName("script")[0];ct.parentNode.insertBefore(nt,ct);} add_chatinline();