Carvalho BMA, Carvalho LM, Silva Jr WF, Minim LA and Carvalho GGP
Design and optimization of Immobilized Metal Affinity Chromatography (IMAC) processes require deep knowledge of driving factors responsible for interaction between immobilized metal and biomolecules. Based on this requirement, interactions between lactoferrin from cheese whey and IDA-Cu2+-cryogel system was investigated. Data from adsorption of lactoferrin in the system at pH 6, 7 and 8, as well as NaCl concentration from 200 to 1000 mmol L−1 were adjusted Langmuir, Freundlich, Temkin and Langmuir-Freundlich isotherm models. Although all models were able to explain the interaction lactoferrin-cryogel system, the Langmuir-Freundlich model was the most accurate one. In addition, it could explain quantitatively the cooperativity and heterogeneity of the bounds between protein and matrix. The methods used in this project are useful for both better understanding of the protein-immobilized metal interactions and developing preparative scale IMAC.
Teile diesen Artikel